

Guideline for Using the Easy Estimation Tool to Calculate Luminous Flux

Table of contents
1. Overview2
2. Structure of a Typical LED Retrofit Lamp2
3. Evaluation of LED Tube Performance6
4. Estimation for LED Down Light9
5. Evaluation of LED Down Light Performance 11
6. Summary14

The part number NFSW757D-V1 and NFSL757D-V1 in this document are the part number of Nichia's products, and do not have any relevance or similarity to other companies' products that may have trademark rights.

1. Overview

This application note describes the guidelines to estimate the optical characteristics (luminous flux/efficiency) of LED-mounted fixtures (tubes and down lights) using the "Easy Estimation Tool." Please refer to the "Easy Estimation Tool Guide" for detailed usage of the estimation tool.

2. Structure of a Typical LED Retrofit Lamp

2.1. Determination of Product Specifications

First of all, determine the target values for product specifications such as the luminous flux and the consumption power. Regarding the luminous flux and the efficiency, take the luminous flux decrease due to the optical cover into account to set their target values. The operating voltage/current are sometimes specified depending on the standard which applies to the product; in such a case, select the appropriate power supply to make it possible to operate the LEDs within the standard.

We designed the LED tube in accordance with "JEL801" specified by the Japan Lighting Manufacturers Association.

Target Values	
Outline:	1,200mm
Luminous Flux:	2,300lm or more
Efficiency:	145lm/W or more
Color Temperature:	5,000K
Average Color Rendering Index (Ra):	80 or more
Input Power:	Voltage; DC45 to 95V, Current; 350mA
	in accordance with JEL801
Rectifying Bridge Diode : Loss of electrical power	Optical Cover LED-Mounted Board

Figure 1. LED Tube Structure

Light Emitting Diode

NICHIA Applicat

2.2. Calculation with Easy Estimation Tool

Fill out the information in each item in the simulation tool.

2.2.1. LED Series and Model

Select the LED "Series" and "Type" in the simulation system (cf. Enclosed in blue 1 in Figure 2). Here is only one estimation example using NFSW757D-V1. In fact, in each Excel spreadsheet, there can be found the calculation results for five types at a time, where you will be able to compare values among them. As described in Section 2.1, the target value of the color rendering index is Ra>80. Therefore, we chose R8000 for the simulation.

2.2.2. Parameters

Fill out the parameters which are necessary to estimate the optical characteristics (cf. Enclosed in blue 2 in Figure 2).

ltem	Note	Input Examples
Target Flux	Target values of luminous flux	2,400lm (Target; 2,300lm+margin)
Color Rank	LED's color rank	For 5,000K, choose sw50.
Junction Temperature: TJ	Estimated LED's junction	50°C, as reference to LED tubes with
	temperature	the same power/structure
Optical Efficiency Loss	Output loss due to optical	Fill out the luminous flux decrease rate
	covers, etc.	resulting from the cover; i.e. 10%
Electrical Efficiency Loss	Power consumed in the	Fill out 3.7%; consumed by the
	circuits other than LEDs'	rectifying bridge diode
LED Multiple	Quantity of LEDs used for the	Fill out arbitrary numbers; they should
	product	be corrected later.

Table 1. Input Information for the Simulation

2.2.3. Estimation of Amount of LEDs

When the maximum input current is filled out in "Forward Current I_{FP}" (Enclosed in blue 3 in Figure 2), the characteristics can be calculated at each specific range (cf. Enclosed in red in Figure 2). Please note that the input I_{FP} below the table is the value for a single LED.

Next, the amount of LEDs (LED Multiple) can be calculated so that the LED tube's target values of the luminous flux, the power consumption, and the optical efficiency can be achieved at a specific input current.

Let us simulate the LED multiple using 757D-V1 as follows:

1) Determine the current applied to each LED which accomplishes the target efficiency (145lm/W or more), judging from the obtained values of "lm/W" (cf. Enclosed in red in Figure 2). As shown in the values in the table, the luminous efficiency of the LED tube will achieve 145lm/W or more unless the input current exceeds $I_{FP} = 65$ mA.

The lower the current is applied to the LEDs, the higher the efficiency of the tube increases, on the basis of the LEDs' characteristics.

This document contains tentative information, Nichia may change the contents without notice.

Application Note

The "LED Multiple (quantity of LEDs)" does not have to be determined at this point, since it is not related with the efficiency of the LED tube.

- 2) Based on the estimated maximum input current (I_{FP} =65mA) and the output current (350mA) of the power supply, the current applied to each LED will be I_{FP} =35mA. Then, the drive circuit can be obtained as follows: 350mA / 35mA = 10 parallel circuits
- 3) Assuming that the LEDs are connected in 10 parallel circuits, let us determine the "LED Multiple", increasing it by 10 pieces. The "LED Multiple" should achieve the target luminous flux of 2,400lm at IFP =35mA. The luminous flux will be 2,473.9lm, when the quantity of LEDs is 160 pieces, which accomplishes the target luminous flux. Thus, the quantity of LEDs needs to be 160 pieces; 16 series and 10 parallel for an LED tube.

		input		3	drop do	wn	Ta	get Flux	2400	2		Pass
	Series Type Spec Current (mA) Tj Max (degreeC)		Series_757D_V1									
			NFSW757D_V1_R8000									
			-		65							
1					120	3				38 - AS		() }
	Luminous	Flux (Im)	Min. 21.4	Typ. 32.0	Max. 36.0			Min.	Тур.	Max.		
	Forward Vo	tage V _F (V)	2.40	2.90	3.30	8						
à	Color	Rank			sw50							
	Junction Tempera	tuer Tj (degreeC)			50			2				
	Cost p	er LED					\$					\$
8	Optical Efficie	ncy Loss (%)			10.0							
	Electrical Effici	ency Loss (%)			3.7							j.
	LED M	ultiple			160							
	Total	Cost		0.0	00		\$					\$
	Forward Cur	rent I _{≂e} (mA)	lm	VF	lm/W	W	lm/\$	Im	VF	lm/W	W	lm/\$
	input 2	100mA Max.			4		-				-	10-0
		1										
		5										
		10		417.71	165	4.177						
		20	1428.4	426.79	161	8.536						
		25		430.87	159	10.772						
		30		434.68	157	13.040		-				
		35	A Stranger	438.26	155	15.339		8		15 - 75		s
		40		441.64	154	17.666						
		50	3490.2	447.90	150	22.395				0 0		
		65 75		456.37	145	29.664		2 <u></u>		10		<u>.</u>
		75 80	5113.9 5428.3	461.62 464.16	142 141	34.621 37.133						
		90	6047.3	469.15	141	42.223						
		100	6654.0	474.06	130	47.406	·					
			input l _{ee}		mA		~	input l _{EP}	1	mA		
Characte	ristics		Im	VF	lm/W	W	lm/\$	Im	VF	lm/W	W	lm/\$
obtained	after Im and		2473.9	438.26	155	15.339						1
		1										
VF are filled out in 4 Info (enclose in blue).												

Figure 2. Example of Calculation

ΜΝΙCΗΙΛ

ΜΝΙΟΗΙΛ

2.3. Impact of Variation in the Luminous Flux on the Simulation

In the Easy Estimation Tool, typical values of the luminous flux/forward voltage specified for each LED type are used. Therefore, the luminous flux and the forward voltage vary even within the same rank. When you fill out "Im" or "VF" (Enclosed in blue 4 in Figure 2), the LEDs' characteristics can be calculated at the rated luminous flux/forward voltage (rated current). Then, you can obtain the minimum/maximum luminous flux/power (efficiency) of the LEDs installed in the tube. Be sure to confirm whether the

2.4. Preparation of LED Tube

We prepared a sample LED tube in accordance with the specifications determined through Section 2.1 and the characteristics calculated through Section 2.2. The LED specifications are as follows:

LED Specifications	
Part No.:	NFSW757D-V1
Quantity:	160 pcs. (16 series and 10 parallel)
Luminous Flux:	31.25lm at 65mA applied to each LED
	(average value of 50 sampled-out pieces)
VF:	2.93V at 65mA applied to each LED
	(average value of 50 sampled-out pieces)
Color Rank:	sw50 (5,000K)
Color Rendering Rank:	R8000 (Ra>80)

minimum/maximum values are within the tolerance specified for the LED tube.

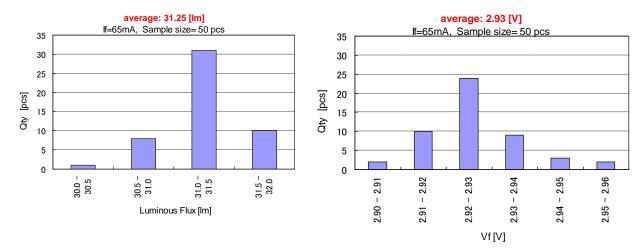


Figure 3. LED's Luminous Flux and VF (50 Sampled-out LEDs)

ΜΝΙΟΗΙΛ

3. Evaluation of LED Tube Performance

The performance of the LED tube prepared in Section 2.4 has to be evaluated to confirm whether there is any significant difference between the actual values and the calculation. If there are any significant differences between them, it is necessary to review the parameters and recalculate the values.

3.1. Electrical/Optical Characteristics

The LED tube's power consumption is measured with a power measurement device and its luminous flux is measured with a sphere. Be sure to operate the LED tube until the heat is saturated and until the measurement results stabilize.

Measurement Results of Sample LED Tube

Power Consumption:	16.1W
Luminous Flux:	2,412lm
Efficiency:	150lm/W

3.2. Thermal Factor

3.2.1. Thermal Distribution

The heat distribution on the board is measured with a thermometer while the heat is saturated in the tube. If the thermal distribution is inhomogeneous, the LEDs' junction temperatures may vary depending on their location. Then, the LEDs' brightness may vary due to their thermal characteristics. Consequently, it is difficult to evaluate the LED tube characteristics.

As seen in Figure 4, there is no problem in the thermal distribution in the LED tube: the heat is homogeneously dissipated in the tube.

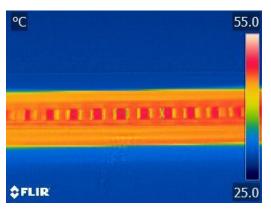


Figure 4. Thermal Distribution in the LED Tube

3.2.1. Thermal Distribution

The junction temperature can be calculated by the soldering temperature (cf. Equation 1). When measuring the soldering temperature, saturate the heat within the tube after fixing the thermocouples to the LED leads with solder or adhesive agent.

Be sure to measure the soldering temperature in the finished product; in a closed environment within the housing by attaching an optical cover, etc.

Thermal design of LED tubes should not exceed the LEDs' absolute maximum rating.

LED Junction Temperature

(Equation 1),

T_s: Soldering temperature (°C), where

> Rojs: Thermal resistance from the LED die to the Ts measuring point (°C/W) W: Power supply to each LED; $I_F \times V_F$ (W)

Measurement Results of Sample LED Tube

 $T_J = T_S + R_{\Theta JS} W$

Ts (Soldering Temperature): 46.2°C

T_J (Junction Temperature): 46.2°C + 13°C/W × 0.1W = 47.5°C

 $R_{\odot JS}$ = 13°C/W * Specified for the LEDs where

W= 2.9V × 35mA = 0.1W

3.3. Comparison between the Measured/Calculated Values

Let's compare the measured values and the calculated ones.

Table 2. Comparison of Measurement and Calculation

	Calculated	Measured	Difference
Tube Luminous Flux	2,474lm	2,412lm	-2.5%
Tube Efficiency	155lm/W	150lm/W	-3.2%

Both the tube luminous flux/efficiency met the target values; however, the measured values were below the calculated ones. The difference of 5lm/W is relatively large, which may affect the LED tube performance. Therefore, the measurement conditions should be reviewed and the measurement results should be evaluated again.

The junction temperature was 47.5°C, based on the measurement results. According to the LED specifications (cf. Section 2.4), the luminous flux and the V_F were 31.25lm and 2.93V per LED, respectively. Therefore, the measurement parameters were corrected as follows:

Table 3. Parameters and Measurement Values

	Before Corrected	After Corrected
Electrical current applied to each LED	35mA	35mA
Junction Temperature	50.0°C	47.5°C
Optical Loss	10%	10%
Electrical Loss	3.7%	3.7%
Qty of LEDs	160pcs.	160pcs.
Luminous Flux per LED	32.0lm (Typ.)	31.25lm
V _F per LED	2.90V (Typ.)	2.93V

MICHIΛ

Application Note

	input			drop do	own	Та	rget Flux	2400			Pass
Se	ries		Serie	es_757E	_V1						
Ту	/pe	NFSW757D_V1_R8000									
Spec Cu	rrent (mA)			65							
Tj Max (degreeC)			120	SX.				20 /0		
Luminous	s Flux (Im)	Min. 21.4	Typ. 32.0	Max. 36.0			Min.	Тур.	Max.		
Forward Vo	oltage V _F (V)	2.40	2.90	3.30							
Color	Rank			sw50				~			
Junction Temper	atuer Tj (degreeC)			47.5			1				
Cost p	er LED					\$					\$
Optical Efficie	ency Loss (%)			10.0							102
Electrical Effic	iency Loss (%)			3.7			j.				
LED N	Aultiple			160							
Tota	l Cost		0.0	00		\$					\$
Forward Cu	rrent I _{FP} (mA)	lm	VF	lm/W	W	lm/\$	Im	VF	lm/W	W	lm/\$
input	100mA Max.	31.25	2.93	-	-				()	-	-
	1										
	5										
		703.2	421.40	161	4.214						-
	8.74	1399.4	1000	156	8.623						
	25		435.47	154	10.887						
	30		Secondar VA	152	13.184		-				
	35	2 Parts of a const	443.22	150	15.513		3275		15		
	40		446.74	149	17.869				-		
	50	3419.4 4384.2	453.19 461.85	145 141	22.660		a a		3 3		3
	65 75	Land Street and Land	467.20	141	30.021 35.040		2		3 3		5
	80	5318.2	469.80	136	37.584	-					
	90	5924.6	474.90	133	42.741	-	2 <u></u>		10 N		
	100	6519.1		131	1.993		-				
		input l _{ee}	35	mA			input l _{EP}		mA		
	•	lm	VF	lm/W	W	lm/\$	Im	VF	Im/W	W	Im/\$
	\	2423.7	443.22	151	15.513						
	Info	•			-	-					

Figure 5. Re-calculation of LED Tube

Let us compare the recalculation results and the measurement ones.

Table 4. Comparison of Recalculation Results and Measurement Results

	Calculated	Measured	Difference
Tube Luminous Flux	2,424lm	2,412lm	-0.5%
Tube Efficiency	151lm/W	150lm/W	-0.7%

The differences in both the tube luminous flux/efficiency became much smaller; therefore, the LED tube was designed in accordance with the calculation after the parameter correction.

This document contains tentative information, Nichia may change the contents without notice.

Application Note

4. Estimation for LED Down Light

🖉 ΝΙ CΗΙΛ

4.1. Determination of Product Specifications

First of all, determine the target values for product specifications such as the luminous flux and the consumption power. We designed an LED down light to achieve the following specifications.

<u>Target Values</u>	
Luminous Flux:	370lm or more
Color Temperature:	2,700К
Average Color Rendering Index (Ra):	80 or more
Circuit:	12 LEDs connected (4series and 3parallel)
Input Power:	DC 330mA (The electrical current of 110 mA is flown into per
	LED, since 3 LEDs are connected in parallel.)

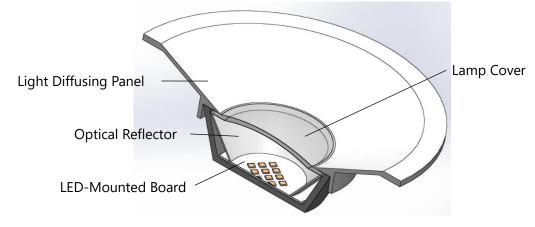


Figure 6. LED Tube Structure

4.2. Calculation with Easy Estimation Tool

Fill out the information in each item in the simulation tool as described in Section 2.2.

4.2.1. LED Series and Type

We used one of the same series with a different color (NFSL757D-V1) for the LED down light. As described in Section 4.1, the target value of the color rendering index is Ra>80. Therefore, we chose R8000 for the simulation.

4.2.2. Parameters

Fill out the parameters which are necessary to estimate the performance.

Application Note

Table 5. Input Information for the Simulation

ltem	Note	Input Examples
Target Flux	Target values of luminous flux	370lm
Color Rank	LED's color rank	For 2,700K, choose sw27.
Junction Temperature: T _J	Estimated LED's junction	50°C, as reference to LED down light
	temperature	with the same power/structure
Optical Efficiency Loss	Output loss due to optical	Fill out the luminous flux decrease rate
	covers, etc.	resulting from the cover; i.e. 19.3%
Electrical Efficiency Loss	Power consumed in the	No electrical loss
	circuits other than LEDs'	
LED Multiple	Quantity of LEDs used for the	12 pcs.
	product	

4.2.3. Calculation

Figure 7 shows that the luminous flux meets (reaches) the target specifications; 370lm.

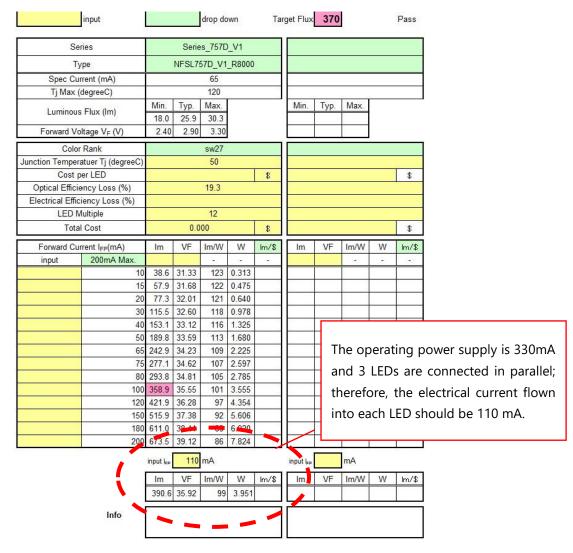
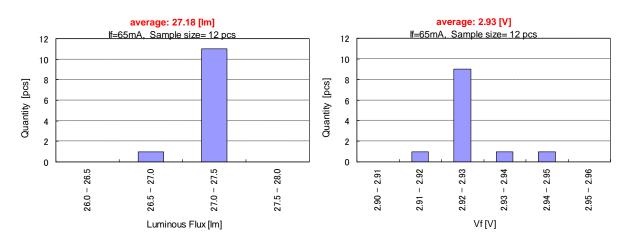
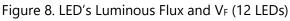


Figure 7. Example of Calculation (LED Down Light)


This document contains tentative information, Nichia may change the contents without notice.


NICHIA Application Note

4.3. Preparation of LED Down Light

We prepared for a sample LED down light in accordance with the target specifications, using the LEDs with the following specifications:

LED Specifications	
Part No.:	NFSL757D-V1
Quantity:	12 pcs. (4 series and 3 parallel)
Luminous Flux:	27.18lm(avg.) at 65mA applied to each LED
VF:	2.93V(avg.) at 65mA applied to each LED
Color Rank:	sw27 (2,700K)
Color Rendering Rank:	R8000 (Ra>80)

5. Evaluation of LED Down Light Performance

5.1. Electrical/Optical Characteristics

Let us measure the electrical/optical characteristics of the LED down light prepared in Section 4.

Measurement Results of Sample LED Down Light

Power Consumption:	4.0W
Luminous Flux:	409lm
Efficiency:	101lm/W

ΜΝΙCΗΙΛ **Application Note**

5.2. Thermal Factor

The soldering temperature was measured with a thermocouple and the junction temperature was calculated.

Measurement Results of Sample LED Down Light

Ts (Soldering Temperature): 47.4°C

T_J (Junction Temperature): 47.4°C + 13°C/W × 0.32W = 51.6°C

where $R_{\Theta JS} = 13^{\circ}C/W$ * Specified for the LEDs

W= 2.9V × 110mA = 0.32W

5.3. Comparison between the Measured/Calculated Values

Let's compare the measured values and the calculated ones.

Table 6. Comparison of Measurement and Calculation

	Calculated	Measured	Difference
Tube Luminous Flux	391lm	409lm	+4.6%
Tube Efficiency	99lm/W	101lm/W	+2.0%

There was a slight difference between the measured and the calculated values.

Therefore, the measurement conditions should be reviewed and the measurement results should be evaluated again.

The LED junction temperature was 51.6°C, based on the measurement results. According to the LED specifications (cf. Section 4.3), the luminous flux and the VF were 27.18lm and 2.93V per LED, respectively. Therefore, the measurement parameters were corrected as follows:

Table 7. Parameters and Measurement Values

	Before Corrected	After Corrected
Electrical current applied to each LED	110mA	110mA
Junction Temperature	50.0°C	51.6°C
Optical Loss	19.3%	19.3%
Electrical Loss	0%	0%
Qty of LEDs	12pcs.	12pcs.
Luminous Flux per LED	25.9lm (Typ.)	27.18lm
V _F per LED	2.90V (Typ.)	2.93V

Light Emitting Diode

Application Note

Series		Series_757D_V1				
Туре		NFSL757D_V1_R8000				
Spec Current (mA)		65				
Tj Max (degreeC)		2 2 32		120		
Luminous	s Flux (lm)	Min. 18.0	Typ. 25.9	Max. 30.3		
Forward Vo	ltage V _F (V)	2.40	2.90	3.30		
Color	Rank			sw27		
Junction Temperatuer Tj (degreeC)		51.6				
Cost p	er LED				_	\$
Optical Efficie	ency Loss (%)	19.3				
Electrical Efficiency Loss (%)						
LED Multiple		12				
Tota	l Cost	0.000		\$		
Forward Cu	rrent I _{FP} (mA)	Im	VF	lm/W	W	lm/\$
input	200mA Max.	27.18	2.93			
	10	40.4	31.53	128	0.315	
	15	60.7	31.91	127	0.479	
	20	80.9	32.26	125	0.645	5
	30	121.0	32.88	123	0.987	
	40	160.3	33.43	120	1.337	8 9
	5	198.7	33.91	117	1.696	
	65	254.3	34.56	113	2.247	
		290.1	34.96	111	2.622	2
		307.6	35.16	109	2.813	
		375.7	35.92	105	3.592	3
		441.8	36.67	100	4.400	1
	195.60	540.2	37.80	95	5.670	6
		639.7	38.89	91	7.001	2
	200	705.2	39 <u>58</u>	89	7 916	
		input l _{FP}	110	mA		
		Im	VF	Im/W	W	lm/\$
	-	408.9	36.29	102	3.992	i i
	Info					

Figure 9. Re-Calculation of LED Down Light

Let us compare the recalculation results and the measurement ones.

Table 8 Comparison of Recalculation Results and Measurement Results

	Calculated	Measured	Difference
Tube Luminous Flux	409lm	409lm	0%
Tube Efficiency	102lm/W	101lm/W	-1.0%

There was no difference in the lamp luminous flux between the recalculated and the measured values. The difference in the lamp efficiency became much smaller; therefore, the LED down light was designed in accordance with the calculation.

6. Summary

Design validation is critical when LEDs are installed into lighting fixtures. The performance should be validated by comparison between the calculated/measured values.

There is no significant difference between the measured / calculated values on this simulation, as long as the simulation is used for LEDs mounted on the board; however, you may not obtain the expected values for the lighting fixture due to optical/electrical loss resulting from the component materials and/or the fixture's structure.

In such cases, re-measure the performance after changing the parameters of the optical/electrical loss. If it is difficult to measure the performance, such as the luminous flux and the V_F , because of the fixture's structure, it should be calculated and measured for the LEDs mounted on the board.

In this document, we used the typical thermal resistance $R_{\Theta JS}$ described by the specifications to calculate the LEDs' junction temperature; however, the characteristics vary when LEDs are installed in lighting fixtures.

As LEDs' junction temperature increases, in general, the light output reduces. Therefore, it is necessary to set the target luminous flux to ensure that the expected value is obtained even at the maximum thermal resistance.

Moreover, the forward voltage and the luminous flux vary even within the same rank. Therefore, assuming that the LEDs' characteristics are distributed at the minimum/maximum within the same rank, you should design lighting fixtures that ensure the expected values are within the specifications.

MICHIΛ

Application Note

Disclaimer

This application note is a controlled document of Nichia Corporation (Nichia) published to provide technical information/data for reference purposes only. By using this application note, the user agrees to the following:

- This application note has been prepared solely for reference on the subject matters incorporated within it and Nichia makes no guarantee that customers will see the same results for their chosen application.
- The information/data contained herein are only typical examples of performances and/or applications for the product. Nichia does not provide any guarantees or grant any license under or immunity from any intellectual property rights or other rights held by Nichia or third parties.
- Nichia makes no representation or warranty, express or implied, as to the accuracy, completeness or usefulness of any information contained herein. In addition, Nichia shall not be liable for any damages or losses arising out of exploiting, using, or downloading or otherwise this document, or any other acts associated with this document.
- The content of this application note may be changed without any prior or subsequent notice.
- Copyrights and all other rights regarding the content of this document are reserved by Nichia or the right holders who have permitted Nichia to use the content. Without prior written consent of Nichia, republication, reproduction, and/or redistribution of the content of this document in any form or by any means, whether in whole or in part, including modifications or derivative works hereof, is strictly prohibited.